Colorful House of Math logo
Log in

The following identities are used extensively in trigonometry. You can use them when you solve trigonometric problems.

Formula

Trigonometric Identities

1.
cos 2α + sin 2α = 1
2.
sin (α + π 2 ) = cos α
3.
cos (α + π 2 ) = sin α
4.
sin 2α = 2 sin α cos α
5.
cos 2α = cos 2α sin 2α = 2 cos 2α 1 = 1 2 sin 2α
cos 2α = cos 2α sin 2α = 2 cos 2α 1 = 1 2 sin 2α
6.
sin(α+β) = sin α cos β+ cos α sin β
7.
sin(αβ) = sin α cos β cos α sin β
8.
cos(α+β) = cos α cos β sin α sin β
9.
cos(αβ) = cos α cos β+ sin α sin β
10.
tan α = sin α cos α

Example 1

Show that cos (π 4 + v) = 2 2 (cos v sin v)

To show this, you use the formula

cos(α + β) = cos α cos β sin α sin β

That gives you

cos (π 4 + v) = cos π 4 cos v sin π 4 sin v = 2 2 cos v 2 2 sin v = 2 2 (cos v sin v)

Example 2

Find the exact value of sin π 12

To solve this problem you write that sin(α) = sin(π α) and use the trigonometric identity

sin(α + β) = sin α cos β + cos α sin β

Then you get

sin ( π 12) = sin (π π 12) = sin (11π 12 ) = sin (π 6 + 3π 4 ) = sin (π 6 ) cos (3π 4 ) + cos (π 6 ) sin (3π 4 ) = 1 2 (2 2 ) + 3 2 2 2 = 6 2 4

sin ( π 12) = sin (π π 12) = sin (11π 12 ) = sin (π 6 + 3π 4 ) = sin (π 6 ) cos (3π 4 ) + cos (π 6 ) sin (3π 4 ) = 1 2 (2 2 ) + 3 2 2 2 = 6 2 4

Example 3

Given sin v = 3 2 , find cos v

You use the formula

cos 2α + sin 2α = 1

which gives you

cos 2v + sin 2v = 1 cos 2v = 1 sin 2v

That means that

cos v = ±1 sin 2 v = ±1 (3 2 ) 2 = ±1 3 4 = ±1 4 = ±1 2

Example 4

Given cos 2v + sin 2v = tan 2v, find sin v

To solve this you have to use several of the trigonometric identities above, and then calculate sin v:

2 cos 2v + sin 2v = tan 2v 1 sin 2v + sin 2v = sin 2v cos 2v 1 = sin 2v cos 2v| cos 2v cos 2v = sin 2v 1 sin 2v = sin 2v 1 = 2 sin 2v| ÷ 2 1 2 = sin 2v

cos 2v + sin 2v = tan 2v 1 sin 2v + sin 2v = sin 2v cos 2v 1 = sin 2v cos 2v | cos 2v cos 2v = sin 2v 1 sin 2v = sin 2v 1 = 2 sin 2v | ÷ 2 1 2 = sin 2v

That means

sin v = ±1 2 = ± 1 2 = ±2 2

Example 5

Show that cos(2α) = cos 2α sin 2α

When you’re solving problems like this, you want to take logical steps to get to what you want to show:

cos(2α) = cos(α + α) = cos α cos α sin α sin α = cos 2α sin 2α

Q.E.D

Example 6

Show that sin(2α) = 2 sin α cos α

When you’re solving problems like this, you want to take logical steps to get to what you want to show:

sin(2α) = sin(α + α) = sin α cos α + cos α sin α = 2 sin α sin α

Q.E.D

Want to know more?Sign UpIt's free!